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Universality in the off-equilibrium critical dynamics of the three-dimensional diluted Ising model
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We study the off-equilibrium critical dynamics of the three-dimensional diluted Ising model. We compute
the dynamical critical exponemtand we show that it is independent of the dilution only when we take into
account the scaling corrections to the dynamics. Finally, we will compare our results with the experimental
data.[S1063-651X99)02511-9

PACS numbegs): 05.50+q, 75.10.Nr, 75.40.Mg

The issue of universality in disordered systems is a containedz=2.237[7] andz=2.180[8] (the experimental value
troversial and interesting subject. Very often in the past it hass at 2.5 standard deviation of the two-loop analytical result
been argued that critical exponents change with the strength In the experiment4], critical amplitudes were measured
of the disorder{1]. However, upon deeper analysis, it has 100 times smaller than those computed in the pure case. It is
turned out that those exponents were “effective” ones, i.e.clear that a more precise experiment on this issue would be
they are affected by strong scaling corrections. So, when ongelcome. We should point out that the critical dynamics of a
studies the critical behavior of a disordered system, it is mandiluted antiferromagnet is the same as that of a diluted fer-
datory to control the leading correction-to-scaling in order toromagnet.
avoid these effects that could modify the dilution- A numerical study of the on-equilibrium dynamics in di-
independent values of the critical exponents. For instance, ifuted systems was performed in 1993 by Hell@dr He mea-
Ref. [2] the equilibrium critical behavior of the three- sured the equilibrium autocorrelation functions for different
dimensional diluted Ising model was studied. The authorgoncentrations and lattice sizes. The autocorrelation tirhe (
showed that by taking into account the corrections-to-depends on the lattice siZ¢) via the formular=<L? (ne-
scaling, it was possible to show that the static critical expoglecting scaling correctionsHe found that all the data, for
nents (e.g., » and ») and cumulants were dilution- concentrations not too close to 1, were compatible, for large
independent. These numerical facts support te@tio L, with the assumption of a single dynamical exponent, dif-
perturbative renormalization-group picture: all the points offerent from the one of the pure fixed point and similar to the

the critical line(with p<<1) belong to the same universality analytical estimate of Ref6] (z=2.3). The final value re-
class (with critical exponents given by the random fixed ported by Heuer was=2.4(1).

point) [3]. Their final values of the exponent&] were in The main goal of this work is to check universality in the
very good agreement with the experimental figuigse be- critical dynamics of diluted model§.e., whether the dy-
low). namical critical exponent is dilution independgint the off-

We will show that an analogous effect also happens in thequilibrium regimg 10]. To do this, we monitor scaling cor-
off-equilibrium dynamics of the diluted ferromagnetic rections in the same way it was done in the static simulations
model, and we will take this into account in our data analysi§2]. Therefore, we will also obtain the value of the
in order to get the best estimate of the critical dynamicalcorrections-to-scaling exponent for the dynamics. Our moti-
exponent. vation to study the off-equilibrium dynamics instead of the

The critical dynamics of the diluted Ising model has beenequilibrium one is based on two reasons. The more important
studied experimentally in Ref4] using neutron spin-echo reason is that the experimental data were obtained in the
inelastic scattering on samples of BNy 54, (antiferro-  off-equilibrium regime, and the second one is tkiat gen-
magnetic diluted modgland has been compared with the era) it is easier to simulate systems in the off-equilibrium
results obtained in pure samples (kef4]. For the pure regime. Moreover, it will be possible to confront azicom-
model, a dynamical critical exponemt=2.1(1) was found puted in the off-equilibrium regime with that obtained at
[in good agreement with the theoretical predictions based osquilibrium[9].
the one-loop perturbative renormalization graiRG [5]], The relevance of the corrections-to-scaling is twofold.
whereas in the diluted case the exporeatl.7(2) was com-  First, the scaling corrections are very important in the right
puted [three standard deviations away from the analyticaldetermination of the stati¢equilibrium simulation critical
prediction based oifone-loop PRG that providez=2.34  exponents[2]. In some models the corrections-to-scaling
[6]]. Furthermore, the dynamical exponent was computed ichange the anomalous dimension of the order of 16ée,
the framework of the PRG up to two loops and it was ob-for example, Ref[11]). Second, the correction-to-scaling ex-

ponent can béand has begrcomputed in a real experiment

[12].
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Moreover, Eq.(4) is valid for times larger than a given
H= _E €€;SS, () “microscopic” time and for times(in a finite lattice less
) than the equilibration timéthat is finite in a finite lattice

whereS; are Ising spin variablejj ) denotes a sum over all To study numerically the present issue, we hgve simulated

the nearest-neighbor pairs, agdare uncorrelated quenched -=100 systems for different spin concentratiops-1.0,
variables, which are 1 with probabilifyand zero otherwise. 0-9, 0.8, 0.65, 0.6, 0.5, and 0.4 at the critical temperatures

We have measured, at the infinite volume critical point'éported in Ref[2]. The Metropolis dynamicEl4] provides
and for several Concentratiopsthe nonconnected suscepti_ our local dynamics. We have checked in all the simulations

bility, defined by that we were in an off-equilibrium situation: for the volumes
and times we have used, the nonconnected susceptibility is
1 far from reaching its equilibrium platedin a finite system
X=13 ; (SS), (2 For completeness we also report the numerical estimate of

the critical exponents for the random fixed point, where all

ithp<
where the brackets stand for the average over different theJr[he systems withp<1 should converge for large length

mal histories or initial configurations and the horizontal barsca_I%S[,g: g:ésfél(llé V:Q'GSS;SS)W:.S'O:;?_A'(()“;)’Z a5nd
denotes an average over the disorder realizations. The ind‘i‘fs_h 37 ).[ € r[] ) usmg_ » Provi EE’S_. - | ( z)
cesi andj run over all the points of the cubic lattice. In N the massive scheme and=0.39(4) in the minimal sub-
practice we use a large number of disorder realizations ( tra(_:non ong. It is worth _nc_)yng that expgrlmentally the best
—512), each with a single thermal history, which amounts tg®Stimate of the susceptibility exponentyis-1.33(2) [16].

neglecting the angular brackets in Eg). This procedure is At this point we can recall the one;Ioolp prediction of the
safe and does not introduce any bias. PRG for thev and » exponentsiv=3+36€/53 and 7
With the notation of the book of ME5] we can write, for = —€/106[3,17], wheree=4—d, d being the dimensional-

instance, the following equation for the response functionjty of the space. If we substituie=1, we obtain the follow-
under a transformation of the dynamical renormalizationing (“naive”) estimates:y=—0.0094 andv=0.5841. Ob-

group (RG) with steps: viously the previous naive estimates are far from the
numerical and experimental values of the critical exponents.
G(k, w, ) =% "G(sk,S%w, u* = (s/£)V1e; + O(sY2)), This would also imply that even the one-loop PRG estimate
(3) of the dynamical critical exponents will stay far from the true
value.
wherew is the frequencyk is the wavelength vectog,is the Notice also that the anomalous dimension exponent (

dynamical critical exponent, by we denote all the param- takes nearly the same value either at the pure or at the ran-
eters of the Hamiltonianu* is the fixed point of the dom fixed point. One can argue that this holds using the
renormalization-group transformatiof s the static correla- arguments provided in Ref.18] using ane’ expansion
tion length, and finally, is the relevant eigenvallequalto  (whered=2+¢€") [19]. This fact, assuming the naive dy-
1/v: y, is the scaling exponent associated with the reducedamical theory(Van Hove theory or conventional thegry
temperaturg e, is its associate eigenvector ad is the [5], implies that the dynamical critical exponent y/v=2

greatest irrelevant  eigenvalue y,<0) of the —# is the same for both diluted and pure system, to first

renormalization-group transformati¢we have assumed that order ine’. We will show that this is not the case for our

the system possesses only one relevant operator diluted model. The Van Hove theory was used 4 to in-

Using Eq.(3) and considering the leading scaling correc-terpret the experimental data.

tions for a very large systeiii3] at the critical temperature, An analytical estimate of the value of the dynamical criti-

we can write the dependence of the susceptibility on theal exponent has been taken from Rél, where a dynami-

Monte Carlo time as cal e expansion é=4—d) was done:z=2+6€/53

+O(e€), which in three dimensions becomes 2.34, where

X, Te(p))=A(p)t" 2+ B(p)trvz- Wz, (4)  we have neglected the tern®e). We can recall the two-

loop computatiore=2.237[7] andz=2.180[8]. One of the
wheret is the Monte Carlo timeT.(p) is the critical tem-  results of this work should be about the reliability of the
perature A(p) andB(p) are functions that depend only on previous estimates of (the first and second term of afe
the spin concentrationy is the exponent of the static suscep- expansion
tibility, v is the exponent of the static correlation lengtlis With all these ingredients we can analyze our numerical
the dynamical critical exponent, and finaly=—y, is the  data for the dynamical nonconnected susceptibility and
correction-to-scaling exponent. Hereafter, we denatg check whether or not the universality, based on
=w/z. We recall thatw corresponds with the biggest irrel- renormalization-group arguments, holds.
evant eigenvalue of the RG in the dynamics; in principle In the first plot(Fig. 1) we show the numerical data in a
will be different from the leading correction in the static double logarithm scale. The slope gives, neglecting the
(which we will denote bywg) [5]. In addition, an analytical corrections-to-scaling, the ratig/(vz). It seems that all the
correction-to-scaling comes from the nonsingular part of thdines behave in a power law but with different sloges.,
free energy and gives us a background to add to(&qg.In  different exponents/(vz)]. This fact could call for nonuni-
our numerical simulations we can neglect this backgroundersality in this modeli.e., critical exponents vary along the
term[i.e., we will show thaty/(vz) — w/z=0.5>0]. critical line). In addition, if we take into account the main
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FIG. 2. The amplitudes defined by Ed) are smooth functions

FIG. 1. The growth of the out-of-equilibrium susceptibility with fth ; ion. Wh h T
the Monte Carlo time, at the critical temperature. The lattice volume® the Sp',n co.ncgntratlon. .ere tB¢p) crosses the axis a “per-
fect Hamiltonian” can be definetbee text

is always 108 and the spin concentrations are reported in the plot.

The errors are smaller than the symbols. see the previous discussjoThe main result of these fits is
that the numerical data can be well described using a
result from the stati¢2], which states that the static critical dilution-independent exponeitboth dynamical and static
exponents(e.g., v and ») do not depend on the dilution while the value of the dilution only enters in the nonuniver-
degree, we obtain a dynamical exponent that depends on tkal amplitudesA(p) and B(p). This fact clearly supports
dilution, violating the prediction of the dynamical perturba- universality in this model.
tive renormalization groug6]. In fact, following the RG From Fig. 2 we can compute the value of the dilution in
flow (for p<1), we should always end at the same randomwhich there is noleading scaling correctionfone kind of
fixed point, and so for large scal@® time and spadezis  “perfect Hamiltonian” for this dynamical problem For p
not expected to depend on the dilution degree. =0.63 we obtainB(p)=0 and so with this dilution it is
In the previous analysis we have not taken into accounpossible to measure dynamical critical exponefésg.,
the scaling corrections. However, we are able to monitor they/(zv) from the growth of the susceptibility, d(
leading scaling corrections given by the exponentWe  —1/v)/(zv) from the relaxation of the energy, efmeglect-
succeeded in fittingusing theminuIT routine[20]) all our  ing the underlying(leading scaling corrections. This dilu-
numerical data to Eq4) for 0.5<p=<0.8. We have 10 pa- tion could be a good starting point in order to monitor the
rameters to fit: A(p) and B(p) for four dilutions (p subleading scaling corrections.
=0.8, 0.65, 0.6, 0.5),y/(vz), and w/z; these last expo- Systems with spin concentratiops=0.9 have also been
nents are assumed to be dilution-independent. simulated, but the data from these runs have not been in-
In this way we have computed the functioAgp) and cluded in the previous analysis because they cannot be well
B(p) in Eq. (4) and y/(vz) and w/z. By fitting the data fitted with the formula of Eq(4). We can explain this fact
using t=4, we have obtained a very good fiwith  assuming that for this dilution the system is in the crossover
X2/Npor=33.8/34, whereNpor stands for the number of region, for the lattice and times we used. Also in the static
degrees of freedomand the following values for the dy- studies a similar effect was found, and only fo0.8 was it
namical critical exponent and the leading dynamical scalingossible to obtain final valug$or exponents and cumulants
corrections: that were dilution-independefi2].
In order to convince the reader of the quality of our fits,
z=2.627), »=0.5013), (5 we plot in Fig. 3 the nonconnected susceptibility divided by
just the correction-to-scaling factgA(p)+B(p)t~ *d]. If
where we have used the value of the static critical exponentgniversality holds(i.e., all the critical exponents, dynamical
vy=1.34(1) andv=0.6837(53)[2]. and static, are dilution-independgrll the data pointgcor-
In order to check the stability of the previous fit, we haveresponding to four dilution degreeshould collapse on a
tried a new fit using only times=8. The fit again is very straight line in a double logarithm scale. It is clear from this

good (with x%/Npor=29.7/30) and figure that this is what happens. The equation of the curve is
"2 with y/vz=0.748.
z=2.587), w=0.7216). (6) We have shown that it is possible to describe the off-

equilibrium numerical data assuming critical exponduis

Clearly the fit is very stable since both exponents are comnamical as well as stafidndependent of the dilution for a
patible inside the error bafsne-half standard deviation n  wide range of dilutions. This supports the predictions of the
and one standard deviation i). Therefore we take, as our (perturbativé renormalization group for the statics as well as
final values,z=2.62(7) andw=0.50(13). for the dynamics. So, théperturbativeé RG scenario that

In Fig. 2 we show our results for the amplitud®§p) and  predicts that all the points on the critical liféor p<<1)
B(p) (using the results of the fit with=4; t=4 plays the belong to the same universality class is very well supported
role of the microscopic time for this model and algorithm; by numerical simulations.
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1000 - - - 4 was z=2.4(1) and the difference from our estimake
,? =2.62(7) iSZyfr.eq— Zeq=0.22(12), i.e., 1.8 standard devia-
: % tions. The conclusion is that both estimations are compatible
§ % in the error bars. In any case, it will be interesting to com-
é 100 ¢ §' 1 pute z on-equilibrium by controlling the scaling corrections.
& % Moreover, our estimate is not compatible with that of
= 1’ PRG to order/e in the \e expansion £=2.34). The com-
< T parison with the two-loop estimates »{7,8] is still worse.
= 10f T p= Oég — 1 One possible explanation for this disagreement could be the
% P P06 lack of Borel summability that the diluted model shoj@4].
: p=0.5 =—s— We remark again that the one-loop PRG estimates of the
static critical exponents were very béske below.
1 10 100 1000 10000 Another interesting issue is to compare the dynamical

scaling corrections and the static ones. Unfortunately, our
statistical precision is unable to solve this issue. For instance,

FIG. 3. The universal part of the susceptibility growth. The taking the values of=4, we obtainw — ws=0.136), which
collapse of the data for different concentrations is the confirmatiolS compatible with zero assuming two standard deviations. If
that universality holds. we take the values of thé=8 fit, we obtain w— wg
=0.35(17). We will devote further wortanalytical and nu-
merica) in order to discern whether the leading dynamical
scaling correction corresponds to the leading static scaling
correction.

We have found that our estimate of the dynamical critical
exponentz=2.62(7) is incompatible with the experimental
valuez=1.7(2).Further numerical and experimental studies
should be done in order to clarify this discrepancy. We wish to thank H. G. Ballesteros, D. Belanger, L. A.

We can compare the value of the dynamical critical expoFernadez, Yu. Holovatch, V. Mam Mayor, and A. Mlonz
nent computed off- and on-equilibrium. Heuer's estimateSudupe for interesting discussions.
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